Risk Assessment for Geologic Carbon Sequestration in Pennsylvania

Conclusions

See Note 1*

See Note 2

See Note 3

See Note 4

See Note 5

See Note 6

See Note

See Note 8

See Note 9

See Note 10

Receptors

Ecological

lumans

Ecological

lumans

Ecological

lumans

Ecological

Humans

Ecological

Humans

Ecological

Humans

Ecological

lumans

Ecological

lumans

Ecological

Humans

Ecological

y	Potential Site Oriskany	Farnham Dome, Utah	Teapot Dome, Colorado	
	+			Reserviced may of against and and characteristics is Promphasis
, m	2,000	900	1,600	Control May Lotter May
		Jurassic Navajo Sand-	Pennsylvanian Sand-	And the set of s
gy	Oriskany Sandstone	stone	stone	Destitute and size sights factured between the size of
ess, m	10-20	12-100	Unknown	Extransm out against factored Instants out datasets
ty	0.05	0.12	Unknown	Instantion care applies fractional admit and green Fe-122 — 5-25 SM water protocomes was fract.
ability,	2.2	>100(?)	Unknown	Re: 1 - Mr. suit - Haans ar Nr. artin - ailes ar sins -
e flux,	Likely to be Background (0.1 to 10)	Reported as 0	0.00482 to 0.1688	Four major aquifer types in Pennsylv (PA Geological Survey, 1999 from 2008)

Oil and gas wells >2,500 ft by county; counties without such wells shown in yellow (Data from Well Information System, 2009)

- has suitable primary seal; secondary seal and attenuation mechanisms were more incertain 2. Due to many oil and gas wells > 2500 ft deep (minimum depth for carbon storage sites), there is increased risk that wells can act as conduits for CO, leakage. Such wells need to be located and properly plugged.

3. If gradual releases of CO, from sedimentary storage sites occur through cap rock, releases likely to be small,1 in the range of natural background respiration rates. 4. Widespread use of groundwater as water

These locations reported fivalues of 0 µmolmvts These locations reported maximum flux values only CO, emission rates for 28 analog sites (DOE, 2007)

	Comparison of CO), Release Rates from	tes from Natural Sandstone	
tial release mechanisms	Category	Potential Site Oriskany	Farnham Dome Utah	
ssessment of	CO ₂ zone depth, m	2,000	900	
	CO ₂ zone lithology	Oriskany Sandstone	Jurassic Navajo Sar stone	
with the candidate storage reservoirs, de-	CO ₂ zone thickness, m	10-20	12-100	
veloped by Tetra Tech for FutureGen Risk	CO ₂ zone porosity	0.05	0.12	

CO, zone permea

Gradual leakage

µmole/m²-s

tunkterer 🚺 Adatar 🔝 tinder 💹 Segurita-

Geologic storage reservoirs and potential release mechanisms

Vulnerability evaluation framework (VEF)

that addresses issues of specific concern

Assessment (DOE, 2007).

(US EPA, 2008).

Tools Used for Screening Assessment of

Subsurface Releases

· Spreadsheet analysis developed by LBNL

(Oldenburg, 2008) that estimates the in-

tegrity of the candidate formation to store

CO., in the absence of wells that might

· Analog database that can be used to pre-

dict CO2 releases based on similarities

penetrate the formation.

Karen Summers, Tom Grieb, Bill Mills, Michael Ungs, Kateryna Sayenko, Kay Johnson Tetra Tech, Inc. • 3746 Mt. Diablo Blvd., Suite 300, Lafayette, CA 94549 (925) 283-3771 • karen.summers@tetratech.com

Category	Medina Group	Salina Group	Oriskany Sandstone	Upper Devonian	
Faults and Fracture Zones					
Earthquakes (last one 1.3 mag- nitude at 1 km located 15 miles SSW of Harrisburg)	not since 1990	not since 1990	unknown	not since 1990	
Induced Faulting/Seis- micity	possible in NW	low seismicity	possible in NW	low seismicity	
Ground Dilation	Low-Thick rock formation	Possible if subsid- ence of salt beds occur	Low-Thick rock formation	Low-Thick rock formation	
Other Tectonic Activity					
Deep faults present	few deep faults	none identified	faults in SW & Central to North Central part	none identified	
Geothermal activity	None	None	None	None	
Wells					
Oil and Gas Wells	High1	High1	Many wells in NW and central SW-N swath, High ¹	High ¹	
Abandoned or Unknown Wells	Unknown ²	wells in SW, Un- known ²	Unknown ²	Unknown ²	
Deep Water Supply Wells	Due to aquifer depths < 500 ft, deep water supply wells are likely to be more than 2000 ft above CO, storage locations				
Potable Groundwater			-		
Migration to USDW	The potential storage formations are 2000 ft or more below USDWs and vertical migration of CO ₂ into those formations unlikely, although uncertainty level is high. There is high density of oil & gas wells that needs to be considered.				
Displacement of Brine into USDW	Because potential storage formations are 2000 ft or more below USDWs and multiple seals present, brine displacement is unlikely to affect USDWs.				
Radon	No evidence of en	hanced radon migra	tion at few CCS sites	where measured.	
Surface Water	1				
Migration into SW	The probability of direct migration into surface water is uncertain, but unlikely due to depth of storage formations (>2500 ft).				
Leakage into SW	The probability of leaks into surface water is uncertain. However, Pennsylvania has over 80,000 miles of surface water, indicating analyses for pipeline routes needed.				
Changes to Human Health and Environment Due to Above Categories	Possible human health and environmental impacts				

1. Oil and gas wells at depths of greater than 2500' are plentiful, and may offer conduits for leakage 2. Little is known about abandoned wells, but due to long history may be present; could serve as conduit for leakage.

Potential for Subsurface Releases after Injection

1. The spreadsheet approach (Oldenburg, 2008) showed that Oriskany Sandstone

supply indicates need for detailed evaluation of potential releases along faults, fracture zones, or improperly sealed walle

- 5. Appropriate site selection is key to reduc ing potential risks.
- 6. Monitoring in all phases of carbon capture and storage is important.

